

Transfection Introduction

What is Gene Delivery?

Gene delivery is the process of

introducing foreign genetic material (DNA or RNA) into cells

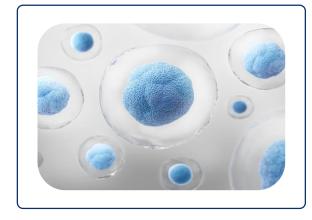
to modify or study their function.

1. What is Gene Delivery?

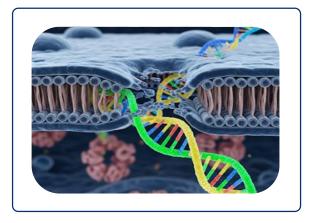
Types of genetic material insertion method

1. What is Gene Delivery?

Step 1


Step 2

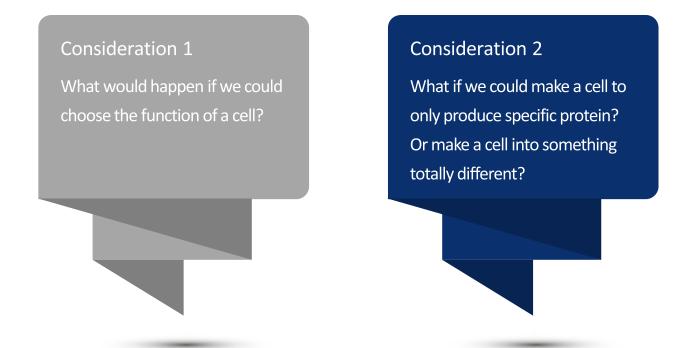
Step 3



Healthy cells with wellstructured cell membrane

Temporary breakage of cell membrane (e.g. electroporation)

DNA or RNA inserted into cells


Normally, cell does not absorb(allow) foreign substances without channels for specific substances with access. It only allows specific substances inside, which requires complex and strict steps.

Transfection is the key that makes this process a lot easier.

Each cell produces proteins based on the genetic information.

This also means that we can manipulate cells by <u>inserting the information we want</u> to produce new protein or target protein.

Generally to either manipulate cells to have specific genetic information or to study treatment

Purpose 1

For novel drug development and disease treatment research

Purpose 2


To study gene expression

Purpose 3

To produce target protein

Novel drug development & research

- To study a way to fix the abnormal cells or to treat a genetic disease
- Widely used by inserting suicide gene inside cancer cells or inserting normal gene into a patient with genetic disorder
- E.g.) replacing old/not functioning parts into a new properly working parts

Gene expression study

- To study how cells change/react or what cells produce when a certain type of gene is inserted.
- To study what the target gene's function is
- E.g.) pressing each button to see what it does

Healthy cell

DNA/RNA inserted

Target protein produced

Target protein production

- To manipulate cell to make massive amount of the target protein such as insulin or antibodies needed for drug
- E.g.) a factory producing proteins in bulk using a blueprint

Transfection

1. Broad Applicability in Eukaryotic Cells

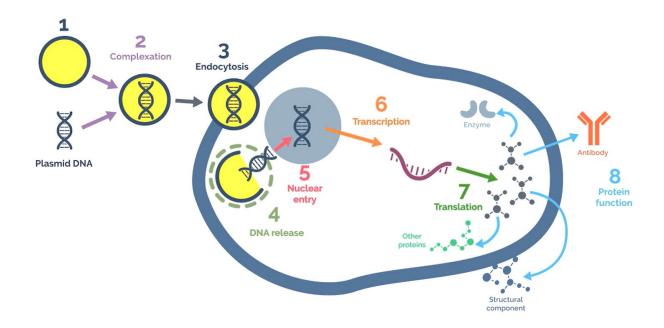
- Transformation is limited to bacteria; transduction uses viral vectors with safety concerns

2. Safety

- Non-viral transfection reduces immunogenicity and insertional mutagenesis risk

3. Compatibility with Advanced Technologies

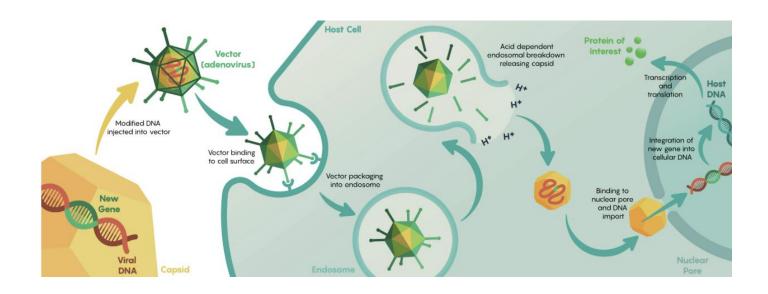
- Essential for CRISPR gene editing, mRNA therapeutics, and vaccine development


4. Cost-effectiveness and Ease of Use

- Simpler and more economical than viral vector production

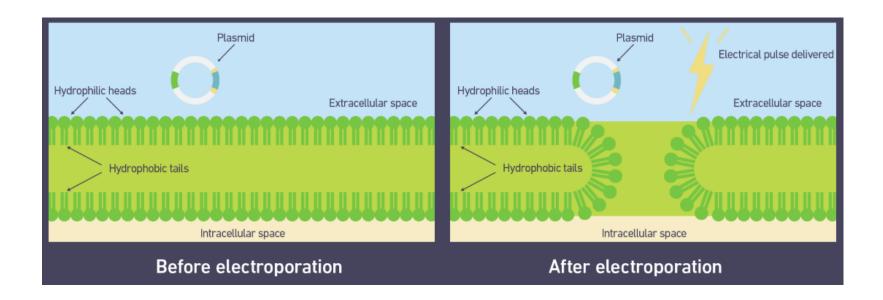
Chemical Transfection

Chemical transfection uses


positively charged reagents to coat negatively charged nucleic acids,

facilitating their entry into cells by neutralizing charge repulsion.

Biological Transfection(Transduction)



Biological transfection(viral transduction) utilizes engineered viruses to deliver genetic material into host cells by leveraging the virus's natural ability to infect and insert genes into the genome.

Electroporation

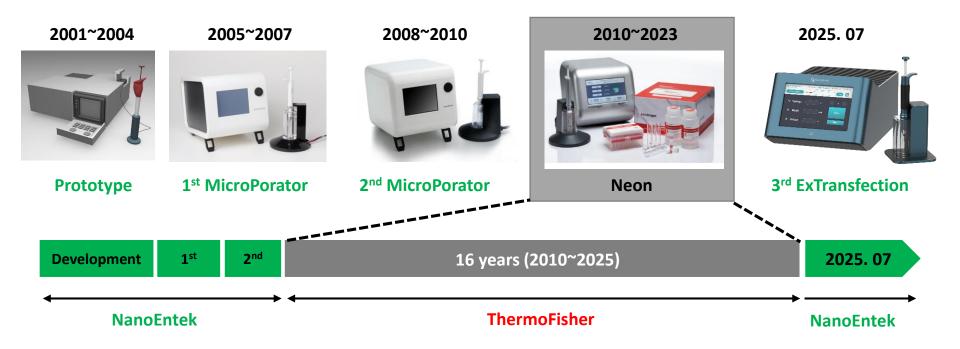
Electroporation transfection delivers genetic material into cells by applying an electrical pulse that temporarily permeabilizes the cell membrane.

Types based on the purpose

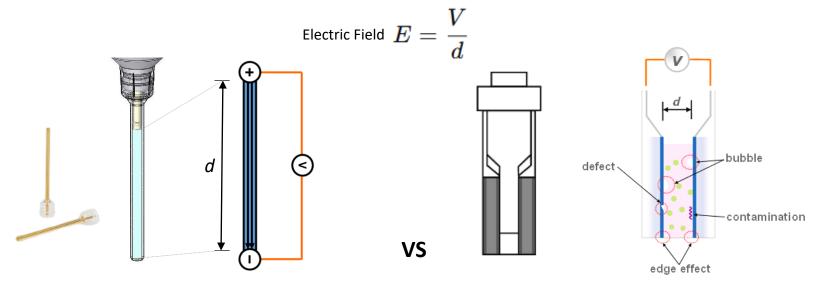
	Chemical	Physical	Biological
Description	Using chemical substance to help penetrate through cell membrane	Using a device, a direct action given to a cell to make a temporary pores on the membrane	Using a virus, gene is transferred to a cell
Mechanism	 Binds to gene and forms a complex Enters the cell by fusion with the membrane or via endocytosis 	 Making temporary entrance on the membrane for genes to enter Physically inserting the gene inside a cell 	A virus is manipulated and used to transportation of gene
Example	Lipofection, calcium phosphate	Electroporation, microinjection	Adenovirus, lentivirus
Advantages	 Simple Cost-effective 	Can be applied to various cell types	High efficiency and stability of gene transfer
Disadvantages	 Efficiency may vary depending on the types of cell Can be toxic to cells 	 Possible cell damage Requires a device 	 Safety issue Complex steps

Market Size

	Competitor	Market Size
Viral infection	Addgene, SBI, Sigma-Aldrich, Thermo-Fisher	Market share: 30% Revenue: 750 million USD
Lipofection	Thermo-Fisher (Lipofectamine), Polyplus, Mirus	Market share: 60% Revenue: 1.5 billion USD
Electroporation	Neon, Lonza, Bio-Rad, MaxCyte, BTX	Market share: 10% Revenue: 25 million USD


ExTransfection™

Electroporation system


History of ExTransfection

- Proven Longevity: Neon has been a trusted electroporation system for 16 years.
- Global adoption : Over 7,200 units have been installed worldwide.
- **High consumable demand** : Annually, **15,000–20,000 consumables** are sold.
- Research contributions : Widely used in scientific studies and innovative projects.
- Customer loyalty: Maintains strong trust through quality and support.

ExTransfection_Technology

ExTransfection™ Gold-Tip

Small electrode surface area with an insulated capillary ensures a consistent electric field due to the extended distance between the electrodes.

Bubble formation and electrolysis tends to be **minimized** with Gold-Tip. Thus, ExTransfection™ Gold-Tip **increases** cell transfection efficiency.

Cell damage is minimized

Transfection efficiency & cell viability are enhanced.

Conventional Cuvette

The **short distance** between the electrodes and the **wide electrode surface area** result inconsistent electric field in cuvette.

Bubble formation and edge effects in cuvettes result in uneven cell distribution, leading to an inconsistent electric field.

Inconsistent Electric Field

Cell damage is increased

Transfection efficiency & cell viability are lower.

ExTransfection_Technology

ExTransfection™ Gold-Tip

Conventional Cuvette

Uniform electric field due to small electrode surface area

Electric Field

Uneven electric field due to large electrode surface area

Minimal heat generation

Heat Generation

Excess heat generated

Maintains stable pH

pH Stability

pH fluctuations due to electrode corrosion

Produces fewer ions

Ion Formation

Increased ion release

Gold-coated electrodes resist corrosion

Durability

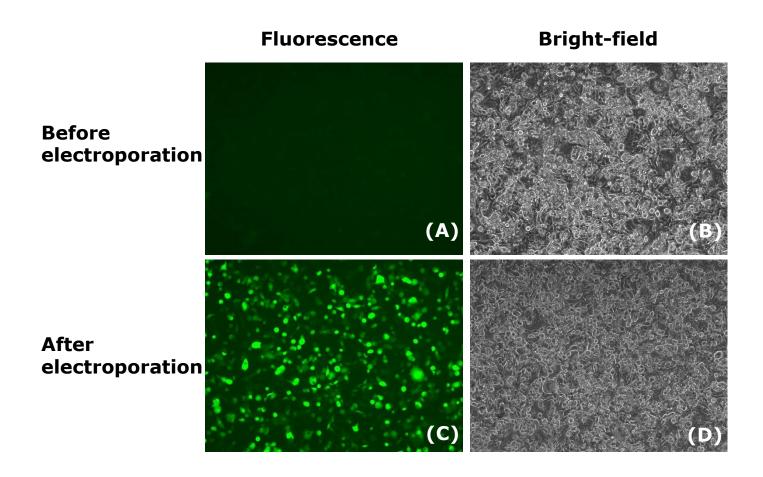
Aluminum electrodes degrade over time

Low mechanical stress (high cell viability)

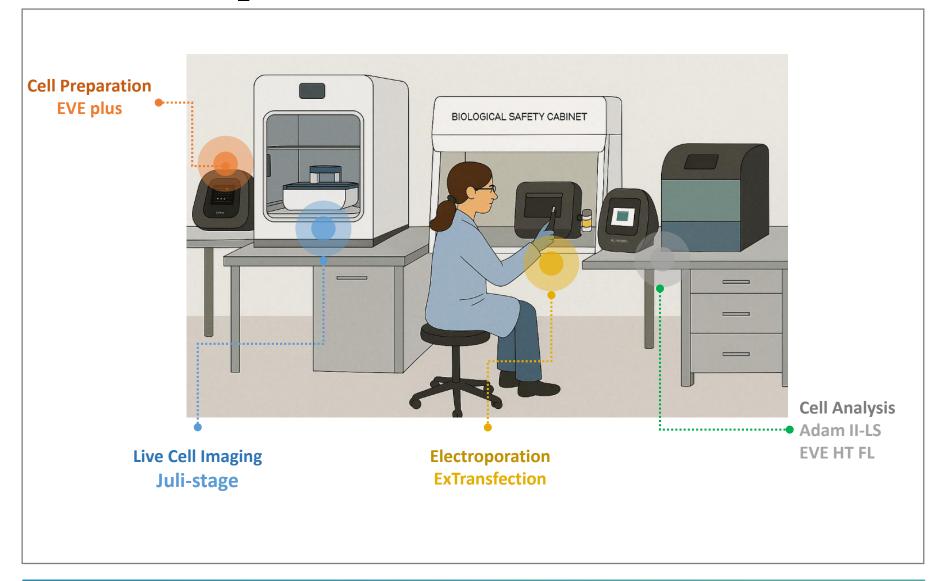
Shear Force

High mechanical stress

ExTransfection Kit Components


- **1. Resuspension buffer R:** buffer commonly used to resuspend standard cell lines with DNA for electroporation.
- **2. Resuspension buffer T:** buffer specifically designed for T cells and other sensitive cell types, optimized to maximize cell viability during electroporation.
- 3. Electrolytic buffer E: For use with 10uL ExTransfection tip
- 4. Electrolytic buffer E2: For use with 100uL ExTransfection tip

ExTransfection_How to use


ExTransfection_Demo Procedure

Electroporation! Cell line library 1st Day 2nd Day **Analysis GFP**, Flow cytometry

ExTransfection_Demo Procedure

Key values and Differentiators

Customer feedback

"It was genuinely helpful. I can now perform tests I previously avoided due to low transfection efficiency."

Alina Mares

"It's easy to use, slightly more affordable than the previous system, and has great features like the database function. I highly recommend it."

— Dr. Lydia Wunderley

"Very cost-effective. It always succeeds in transfection, saving time and effort. It's incredibly efficient and reliable."

Claire Demenis

"It's much faster than reagent-based transfection systems. Instead of taking over an hour, it completes transfection in just under 5 minutes."

Mathlew Hayley

Neon™ NxT Electroporation System vs. Neon™ Transfection System

Specification	Neon NxT Electroporation System	Neon Transfection System
Pipette type	1-channel and 8-channel options	1-channel only
Electroporation Volume	10 μL or 100 μL	10 μL or 100 μL
Electroporation buffer volume*	2 mL	3 mL
Tip attachment	ClipTip technology	Friction
Electroporation pulses	1–10	1–10
Pulse duration	1–100 ms	1–100 ms
Pulse voltage	500–2,500 V	500–2,500 V
Arc detection	Yes	No
Cloud connectivity	Yes	No
Pulse generator dimensions**	9.5 x 7.6 x 9.9 in. (W x H x D) 11. 9 lb (5.4 kg)	9.5 x 8.9 x 13.6 in. (W x H x D) 13. 8 lb (6.25 kg)
Cable management feature***	Yes	No
Touch display	8-inch capacitive touchscreen	7-inch touchscreen
Electrical rating	100-240 VAC, 270 W	100–240 C, 150 W

- Pre-saved, frequently used cell-specific optimization protocols are stored.
- Tablet PC instead of touch screen

